

INTENDED USE

VALIDATE GC 1 Calibration Verification / Linearity Test Kit solutions are intended for in vitro diagnostic use in the quantitative determination of linearity, calibration verification and verification of reportable range in automated, semi-automated and manual instrument systems for the following analytes: albumin (ALB), blood urea nitrogen (BUN), calcium (CA), chloride (CL), cholesterol (CHOL), creatinine (CREAT), glucose (GLU), lactate (LAC), lithium (LITH), magnesium (MG), phosphorus (PHOS), potassium (K), sodium (NA), total protein (TP) and trialyceride (TRIG).

Each test kit consists of two sets. The GC1 Set consists of one bottle each of Levels 1 through 6. Each bottle contains 4.0 milliliters. There exists a linear relationship among Levels 1 through 5. For ALB, BUN and TRIG, a linear relationship exists among Levels 1 through 6. The CREAT JAFFE Set consists of one bottle each of Levels 1 through 5. Each bottle contains 3.0 milliliters. There exists a linear relationship among Levels 1 through 5.

Note: When using the Creatinine Plus Method, use the GC1 Set to test Creatinine. When using the Creatinine Jaffe Method, use the CREAT JAFFE Set to test Creatinine.

SUMMARY

Each **VALIDATE** GC 1 Calibration Verification / Linearity Test Kit contains purified chemicals in a human serum protein base. Multiple levels are provided to establish the relationship between theoretical and actual performance of each of the included analytes. The **VALIDATE** GC 1 Calibration Verification / Linearity Test Kit will assist in the documentation of linearity, calibration verification and verification of linear range required by many inspection agencies. The solutions will also provide assistance when troubleshooting instrument systems, reagent problems and calibration anomalies.

REAGENTS

Reactive Ingredients:

Purified chemicals for ALB, CA, CHOL, CL, CREAT, GLU, K, LAC, LITH, MG, NA, PHOS, TP, TRIG and urea nitrogen in a human serum protein base.

Nonreactive Ingredients:

Preservatives and stabilizers.

Precautions and Warnings:

For In Vitro Diagnostic Use

Disposal of all waste material should be in accordance with local guidelines.

WARNING: Potentially Biohazardous

Human source material is considered potentially biohazardous. Material of human origin used in the manufacture of this test kit was tested at the donor level using FDA or CE approved methods and found to be non-reactive for HBV, HCV and HIV. Because no test method can offer complete assurance that infectious agents are absent, these specimens should be handled and treated as potentially infectious.

STORAGE AND STABILITY

VALIDATE GC 1 Calibration Verification / Linearity Test Kits are stored at -10° to -25°C. Do NOT store in a frost-free freezer. Test kits are stable until the expiration date printed on the bottle and storage container when handled according to instructions. A maximum of four (4) freeze-thaw cycles is recommended.

PREPARATION

Prior to use, remove the **VALIDATE** GC 1 Calibration Verification / Linearity Test Kit from storage and allow to come to room temperature (18° to 25°C). Invert gently several times before dispensing.

To maximize stability, it is recommended that exposure to room temperature be minimized. Tightly cap opened bottles and return to -10° to -25°C immediately after dispensing.

Discard any solutions that appear to have gross bacterial contamination.

The **VALIDATE** GC 1 Calibration Verification / Linearity Test Kit should be treated in the same manner as patient samples. If dilutions or pre-treatment are required as part of the testing procedure, follow the manufacturer's instructions.

ASSAY

Analyze each level in replicates. If following the CLSI EP6 guidelines for linearity, use a random analytical sequence to assay each level.

Important Analyzer-Specific Assay Information:

Roche Hitachi users: run Levels 1 through 5 for all analytes. Also run Level 6 for ALB. BUN and TRIG.

All other analyzers: run Levels 1 through 5 for all analytes.

CALCULATION OF RESULTS

VALIDATE Calibration Verification / Linearity material is prepared in a manner such that an equal distance (delta) exists between Levels 1 through 5. This dilution scheme is consistent with the CLSI EP6 recommendation for preparing linearity sets.

The theoretical value for Level 6 for ALB, BUN and TRIG is determined by multiplying the calculated theoretical value of Level 3 by the following factors:

ALB factor = 2.26

BUN factor = 3.28

TRIG factor = 2.24

Two examples for calculating the theoretical values of Levels 1 through 6 are provided below.

Example 1:

Choose two consecutive levels and calculate the delta between the recovered values. The following BUN example demonstrates the use of the delta between Levels 2 and 3 to calculate the theoretical value for Levels 1, 4, 5 and 6:

Mean Recovered Values

Level 1	1.4
Level 2	29
Level 3	57
Level 4	84
Level 5	112
Level 6	185

Using Level 2 and Level 3 recovered values to calculate the Delta, the above data produces the following:

Level 3 - Level 2 = Delta, or (57 - 29 = 28)

Level 1 Theoretical = Level 2 Recovered - Delta, or (29 - 28 = 1)

Level 4 Theoretical = Level 3 Recovered + Delta, or (57 + 28 = 85) Level 5 Theoretical = Level 4 Theoretical + Delta, or (85 + 28 = 113)

Level 6 Theoretical = Level 3 Recovered * BUN factor or (57 * 3.28 = 187)

Using the delta between Level 2 and Level 3, the theoretical value for each level would be:

Level	Theoretical (x-axis)	Recovered (y-axis)		
1	1	1.4		
2	29	29		
3	57	57		
4	85	84		
5	113	112		
6	187	185		

NOTE: The user can select the calculated delta between any two consecutive levels to calculate the theoretical values. Typically, the user should choose an area of recovery known to be linear for the method being studied.

Example 2:

Theoretical values can be determined using the recovered values for Levels 1 and 5. Using this method, the following formulas apply:

Level 2 Theoretical = 0.75 * (Level 1) + 0.25 * (Level 5)

Level 3 Theoretical = 0.5 * (Level 1) + 0.5 * (Level 5)

Level 4 Theoretical = 0.25 * (Level 1) + 0.75 * (Level 5)

Level 6 Theoretical = Level 3 Theoretical * BUN factor

Using the recovered values for Level 1 (1.4) and Level 5 (112), the following applies:

Level 2 Theoretical = 0.75 * (1.4) + 0.25 * (112) = 29.1

Level 3 Theoretical = 0.5 * (1.4) + 0.5 * (112) = 56.7

Level 4 Theoretical = $0.25 \times (1.4) + 0.75 \times (112) = 84.4$

Level 6 Theoretical = 56.7 (Level 3 Theoretical) * 3.28 (BUN factor) = 186

Level	Theoretical (x-axis)	Recovered (y-axis)		
1	1.4	1.4		
2	29.1	29		
3	56.7	57		
4	84.4	84		
5	112	112		
6	186	185		

After theoretical values are calculated, for each analyte plot the expected (Theoretical) value on the x-axis versus the Recovered value on the y-axis using standard linear graph paper. If the system is linear, the plot should approximate a straight line. The point at which the line is no longer straight can be used to determine the limit of linearity or the reportable range.

Data reduction is available from Maine Standards Company. Commercially available linear regression software may also be used. The software should provide data point display and x-y graphical presentation. Linear regression should be interpreted using standard statistical analysis and the results should be compared with the instrument manufacturer's claims for linearity or with individual laboratory performance requirements. The degree of acceptable nonlinearity is an individual judgment based on methodology. clinical significance and medical decision levels of the test analyte.

Customers that are using commercially available linearity software to analyze a six level analyte and have questions, please contact Maine Standards Company Technical Support at 800-377-9684 for assistance.

LIMITATIONS

VALIDATE GC 1 Calibration Verification / Linearity Test Kit solutions are not intended for use as routine quality control materials or as calibration materials.

EXPECTED VALUES

VALIDATE GC 1 Calibration Verification / Linearity Test Kits are manufactured such that a linear relationship exists among Levels 1 through 5. For ALB, BUN and TRIG, a linear relationship exists among Levels 1 through 6.

The following analytes are inverted in GC 1: LITH and PHOS. Level 1 contains the highest concentration for these analytes and concentration decreases from Level 1 down to Level 5.

TRACEABILITY

VALIDATE Calibration Verification / Linearity Test Kit solutions are tested during manufacturing with standards traceable to National Institute for Standards and Technology (NIST) Standard Reference Material (SRM), where available. For analytes where NIST materials are not available, primary analytical standards are used.

TYPICAL VALUES

Actual results obtained may vary depending on instrumentation, methodology and assay temperature. Results may also be dependent on the accuracy of the instrument / reagent system calibration. The degree of acceptable nonlinearity is an individual judgment based on methodology, clinical significance and medical decision levels of the test analyte.

Typical Values by Level 1100ro							
GC1 SET							
Analyte	Units	1	2	3	4	5	6
ALB	g/dL	0.2	1.7	3.1	4.6	6.0	7.0
BUN	mg/dL	1.4	29	57	84	112	186
CA	mg/dL	0.8	5.6	10.5	15.3	20.1	
CHOL	mg/dL	4	203	402	601	800	
CL	mmol/L	60	80	100	120	140	
CREAT PLUS	mg/dL	0.1	7.7	15.3	22.9	30.5	
GLU	mg/dL	2	189	376	563	750	
K	mmol/L	1.5	3.6	5.8	7.9	10.0	
LAC	mg/dL	1.8	36	71	105	140	
LITH	mmol/L	3.0	2.3	1.5	8.0	0.05	
MG	mg/dL	0.2	1.4	2.6	3.7	4.9	
NA	mmol/L	80	105	130	155	180	
PHOS	mg/dL	20.0	15.1	10.2	5.2	0.3	
TP	g/dL	0.2	3.2	6.1	9.1	12.0	
TRIG	mg/dL	9	228	447	666	885	1000

CREAT JAFFE SE	T					
Analyte	Units	1	2	3	4	5
CREAT JAFFE	mg/dL	0.2	6.4	12.6	18.7	24.9

Hitachi users run Level 6 for ALB, BUN and TRIG.

Note: When using the Creatinine Plus Method, use the GC1 Set to test Creatinine. When using the Creatinine Jaffe Method, use the CREAT JAFFE Set to test Creatinine.

ORDERING INFORMATION ORDER NO.: 1100

VALIDATE GC 1

Calibration Verification / Linearity Test Kit GC1 Set: 6 x 4 mL CREAT JAFFE Set: 5 x 3 mL

For technical assistance or to place an order, please call:

800-377-9684 or 207-892-1300 Fax 207-892-2266

Please allow 5 to 7 days for delivery.

Maine Standards Company 221 US Route 1 Cumberland Foreside, ME 04110 800-377-9684 207-892-1300 Fax 207-892-2266 www.mainestandards.com

C€ Symbols – This product fulfills the requirements of the European Directive 98/79/EC for *in vitro* medical devices. The following symbols may be used where applicable in labeling for Maine Standards Company products:

LOT

Lot Number

Expiration Date

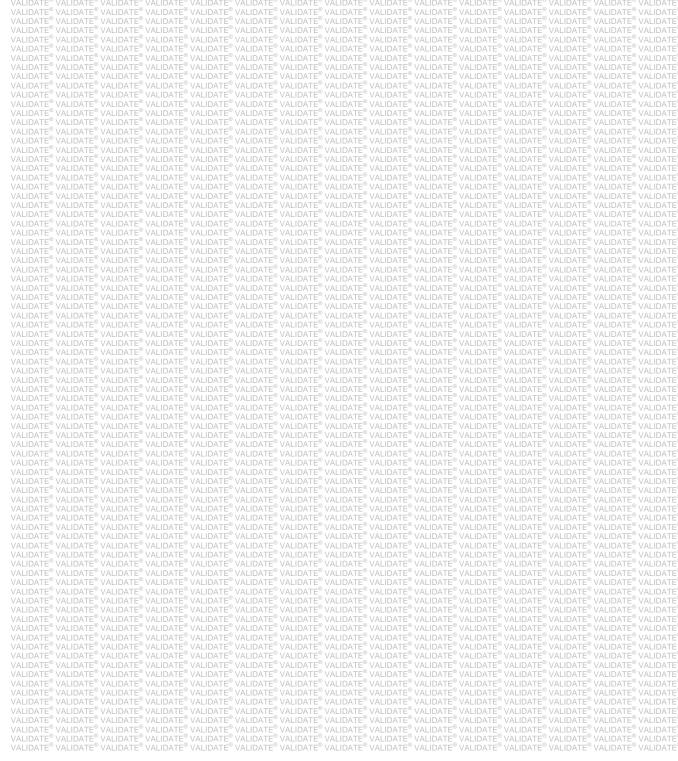
Manufacturer

Storage Temperature

In Vitro Diagnostic Medical Device

Catalog Number

Insert


Biological Risk

EC REP Wellkang Ltd (www.CE-marking.eu)
29 Harley St., London W1G 9QR, UK

For a list of countries in which VALIDATE[®] is registered see: www.mainestandards.com/ce

A worksheet to assist with manually calculating theoretical values can be found at www.mainestandards.com/Products or by calling Customer Support at 1-800-377-9684

